CMPE-013/L

Introduction to “C”
Programming

Max Lichtenstein

iy

=,
=

UCSC CMPE-013/L Summer 2018

Stroct+ €

MAPY

L

L

—
—
—

2 [et cti])) “l

R r il
N YN

cl"'lu‘" ﬂ"h*%

i V)
5:-2&({&/9“)

5

Roadmap

e Announcements
e Grades Review
Battleboats Stuff

— Rules
— Field Module

— Demo

¢ Timer Question oo [as¥ Cea @S

* Randomness Ohe ven & Hinem
* BREAK
* Engineering Tips from Max

» Software Design Principles

ot

s

o
W

UCSC CMPE-013/L Summer 2018

Announcements

e Next week:
— Still required! av,2
— What to cover?
— Current “agenda”:
* Cdark arts —_—
¢ Tour of Board.c/h and other CMPE13 libraries s
e Cys C++, CH, other low-level languages i

¢ Hierarchical / Parallel State Machines T

e Fyvents and Services: Queues and Priorities —

— Taking requests!

UCSC CMPE-013/L Summer 2018

Announcements

e Gitlab still “down”!
— We have to live with it
— Try disabling ssl verification in repo config (so much easier!)

Fﬂ-\’jt

git config --global http.sslVerify tMdly

é

Max Lichtenstein UCSC CMPE-013/L Summer 2018

Grade stuff

L:a_(G

=]

M —

— o

k=]

I-II.I.I'II.I.I-S

‘ N

|~

E=

@

o

..5

&=

K

]

| m ™

[=1 [=]

| 4 K

Py P

|~ |

o o

T T T T a. T fﬂ T Ll ﬁ.

@ v = & ©° 8 @ e =w ~ g°
— (=] [=1 o i=] (=]

apeafi s mojag sjuapnis jo Juadsad

grade

UCSC CMPE-013/L Summer 2018

Lichtenstein

5

Grade stuff

107 — Lab 2 (a1788)
—— Lab 1 i41786)
089 — Lab3{41789)
— Lab4 {41790}

069 — Lab5 (41791}

0.4

0.2 4

0.0

0.2 0.4 0.6 0B Lo
&
§ L0 — guiz 1 (41798)
@ —— Quiz 2 {41800
E 089 — quiz 3 (41801
o — i 4 {41802)
2 06 — qQuiz 5 (41803)
2 —— Guiz & (41804])
3 044 —— Quiz 7 ({41803)
T 0.2
c
b
£ 0.0
& - - ; : = ;
00 0z 04 0.6 08 10
Soone

Max Lichtenstein UCSC CMPE-013/L Summer 2018

Grade stuff

1.0

0.8 4

o
o
)

avg lab score
=
Y

0.2 1

0.0 T T Y
0.0 0.2 0.4 0.6 0.8 1.0

Avg quiz score

Max Lichtenstein UCSC CMPE-013/L Summer 2018

Battleboats Stuff

=

UCSC CMPE-013/L Summer 2018

Battleboats Demo

i w

UCSC CMPE-013/L Summer 2018

Battleboats Rules

e A coin flip for first move v
e Players place boats v

e Each turn:
— The attacking player makes a guess /

— The defending player describes the result
e MISS, HIT, SINK a ship

— BOTH players record the results
e The game is over when one player is out of ships.

ot

o
W

UCSC CMPE-013/L Summer 2018

M

Battleboats Rules

)

\

T Epn

O

D

<
(=,

UCSC CMPE-013/L Summer 2018

Field Module

|typedef =num {
f/f These denote field po:
FIELD SQUARE_EMPTY = 0,
FIELD_SQUARE_SMALL_BOAT,
FIELD_SQUARE_MEDIUM_BOAT,
FIELD_SQUARE_LARGE_BOAT,

. FIELD SQUARE HUGE_BOAT,
7r0d L)1

|fff These denote field po:

FIELD SQUARE UNENCWN,

FIELD_SQUARE_HIT,

///fcthese statuses may be
FIELD SQUARE MISS,

Loy oy

f//f This may be useful fom
FIELD SQUARE CURSOR,

\

//f Occasionally, it may i
FIELD SQUARE INVALID,
-} SquareStatus;

Snh e S

Max Lichtenstein UCSC CMPE-013/L Summer 2018

Field struct

typedef struct {
Kf,f’*“ uint8 t grid([FIELD ROWS] [FIELD COLS]:
uinté t smallBoatlives;’
uints_ t mediumBoatLives;
uinté_t largeBoatlives;
uint8 t hugeBoatlives:
} Field:

UCSC CMPE-013/L Summer 2018

BattleBoats Tips

e Design with visibility in mind
W€ oLED Prinl # i~
Lgpk‘ ‘J{h" “|‘unij iy i /2

e Use params!

ll.".,.J.
* Used to signal different types of errors a
Erf!!f" E.'J tf\"‘L * nf a BattleBoat Error avent. Tou are not

* but they can make error checking much more

[/42):fine PrIAF(...) jormedst e

BB _SUCCESS = O, £/

. - BE_ERROE_BAD CHECHKSUM, f11

)# J fine BE_ERROR_PAYLOAD LEN EXCEEDED, fi2
BE_ERROR_CHECKSUM LEN EXCEEDED, /3

BE_ERROR_INVALID MESSAGE_TYPE, rF/4

BE_ERROR_MESSAGE FARSE_FAILURE,
_’/EOBE.—E o

Max Lichtenstein UCSC CMPE-013/L Summer 2018

BattleBoats Announcements
7 s e Small tweak to Lab09 spec:

— Should help with
— error investigation

it all data
lay new game meassage

)

genedate B
send ACC

initiakize fields

{from any stale)

display
appropriake
message to

é

UCSC CMPE-013/L Summer 2018

BattleBoats Announcements

e You're supposed to work with your partner!

b
(cp

UCSC CMPE-013/L Summer 2018

How fast can an ISR go?

=
&

UCSC CMPE-013/L Summer 2018

FIGURE 13-1: TIMER1 BLOCK DIAGRAM(")

PRI j_
I

3

16-bit Comparator

iF
TMRA IG
T1IF | —
Event F'“_g a b . TGATE (T1CON<7>)
a —
TGATE (TICON<T>) TCS (TICON=<1>)
ON (T1CON<15>)
' SOSCOITICK : [}1
: : Gate Prescaler
' 5 EN |
' 2 Syne —— oo
: soscl :
: ' PBCLK ,

TCKPS<1:0>
J_lJ'U—Lj_‘ (T1CON<5:4>)

Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Rese led FSOSCEN bit in

Configuration Word DEVCFGA. "

—— L

Max Lichtenstein UCSC CMPE-013/L Summer 2018

§

FIGURE 8-1:

PIC32MX3XX/4XX FAMILY CLOCK DIAGRAM

M use PLL a
| all I
I UFm [USB Clock (48 MHz)
| +— dwvx | PLL x24 b div 2 |
| UF = 4 MHz UPL U:RCEN|
Primary Oscillator (Posc) L || upLLiDIV<2:0> |
Cﬂ‘"‘ o8c1 XT,HS,EC _
Tl? Internal 4 MHz = Fin = 5 MHz XTPLL, HSPLL X
]] Peripherals
Logic] Fin _ ECPLL, FRCPLL . Pusucalur Bl el
div x PLL ™= divy - div x PRCLK
I |
z;I:- PLL Input Divider | PLL Output Divider
o2 OSC2l) FPLLIDIV=2:10= PLLODIV=2:0= PROIV<10>
FRC 1 PLL Multiplier
Oscillatey |—{ COSC<20> PLLMULT<2:0> -
8 MHz typical L
TUN<5:0> o 16 FRCIE
CPU and Select Peripherals
FRCDIV el
| Postscaler = SYSCLK
|
FRCDIV<2:0>
LPRC LPRC _
Oacitator 31.25 kHz typical
Secondary Oscillator (Sosc)
sosco L L., 32.788 kHz Sosc /(
v
SOSCEM and FSOSCEN
@ Clock Control Logic
e Fail-Safe | | FSCMINT
S0sCI Clock
e L oritne_J, . L FSCM Event

bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits

The POR default is set by the FPLLMUL<2:0> bits (DEVCFG2<6:4>). Do not change these bits if the PLL
is enabled. Refer to the “Special Features" chapter in the specific device data sheet for details.

111 = Clock is multiplied by 24

110 = Clock is multiplied by 21

101 = Clock is multiplied by 20

100 = Clock is multiplied by 19

011 = Clock is multiplied by 18

010 = Clock is multiplied by 17

001 = Clock is multiplied by 16

000 = Clock is multiplied by 15

"ﬁ
Sl

Max Lichtenstein UCSC CMPE-013/L Summer 2018

High-Performance 32-bit RISC CPU:

« MIPS32® -bit core with 5-stage pipeline
* | 80 MHz maximum frequency

+ 1.56 DMIPS/MHz (Dhrystone 2.1) performance at
0 wait state Flash access

+ Single-cycle multiply and high-performance divide
unit
« MIPS16e® mode for up to 40% smaller code size

+ Two sets of 32 core register files (32-bit) to reduce
interrupt latency

+ Prefetch Cache module to speed execution from
Flash

é

Max Lichtenstein UCSC CMPE-013/L Summer 2018

woid

ISR{ TIMER VECT

INTClearFlag (INT_T1):
———

5

if (++timerDaca.valu

L]

cimerDacs.&evenc =

CR, IPL4AUTO) TimerlHandler (woid)

timerData.value = O;

{

ppma
Clo+
T '

What happens

é

Hﬁxﬁﬂﬁﬁ:?SH:

I!‘."n'_lf. _ ISR(_TIMER 1 VECTOR, IFL4AUTO) TimerlHandler (woid)

Ox#DOD2EF: BDPGFR 5F,

5P

OxSDO0OZEFC: MPCD K1, EPC

Qx5DO02700: MFCO KO,

Qx5DO02708: S5W K1,
OxSDO0Z70C: MFCD K1,
OxeDOO2T10: SW KO,
OxSDO02714: SW H1,
0x5D002718: INS KL,
OoxSDO0Z71C: ORI K1, EL,

OxsDOO2T20: MTCO K1, 5t
28 (5F)
24 (5F)
108 (SF)
Qx5DO02730: AMDI V1, V1, 1%
ZERQ,

OoxSDO02724:
Qx5D002728:
OxSDOo0272C:

W V1,
sW Vo,
LW V1,

OxSD0O02734: BHE V1,
OxsDO02T38: WOP
OxSDO0273C:
0x9D002740:
oxSDO0Z744:
0x9D002748:

W

5W 58

SW TS, B4(5

5W T2
OoxSDO0274C: SW T7,

5w

W

W

T TE (5
QxSD002750:

Ox5D0O02754: I5, 68(35

HR, SZ(5F)
58, BR(5F)

+ BO(SF)

TE, 72(5F)

SRECcl
OxSD0O02704: ADDIU SF, 5F,
11€(5F)
Stacus

108 (5F)

112 [SF)
ZERD, 1. 15

=120

40596
atus

OxSDO02TED

F}

F} <i'
F}

T4, E€4(3F)

when an
interrupt
occurs?

36 (5F)
32 (5F)
20(5F)

OxSDO02TT4: SW Rl
Ox5D002778: SW AD,
OrSDO02TTC: SW AT,
OxSDO027T80: ROP
OxXSDQ02ZTE4: MFLO VO
OxSDO02ZTER: SW VO,
OxSDOOZTEC: MFHI V1
Ox5D002790: SW V1, %€(5F)
OxSDOQ0D2ZTe4: ADDD 33, 5P,
! ff Clear the
! INTClearFlag (INT T1}):
0x5D002758: ADDIU AD, IERD, 8
ORSD00ZTHC: JAL INTClearFlag
OxSDO02TAD: RWOP

100 (5F)

ZERD

interrupt flag.

UCSC CMPE-013/L Summer 2018

j ‘j’r.J" (‘?M/"\,'J"’

j 9."+‘ +*‘) Laxl,()é’ _ 5""(’!"‘:55:”1["!

1} 9/ &+ pPwsh ———}-9\7

Randomness

é

UCSC CMPE-013/L Summer 2018

Qo) doo)o .

Fan) ()/
wnAtli_+ € Lo .. (553 EJ
q
EVEEEVA TS WY
oy rand() / (o
Jo ‘
x= rmd 0317, a 2%

Jv 1k (% S10)] [~
i

3 lp

VP\AJ (ve-]'..ql-tn O + 0 JGDQ.QD
/

.r-

I (3 5;’ T

l?“ir’f}';
W [o0090 ... 2000 [9Nolol 00 |os,

K| 1t ol olleoool ol 9695 . . .02,

i X = Ranl(),
x &: r‘w.)()d“-“}

)('f oo 000 °

Randomness

e How to do randomness on a deterministic machine?

S
Max Lichtenstein UCSC CMPE-013/L Summer 2018

Pseudo-randomness

e Start with a big, static variable
e Seed it

e Hash it
— Usually, a linear Congruential Generator: Close Crevya
“Fur) A 12
X1 = (aX,, +¢) mod m
7 4 e
Crnst Cons (XS %A

K/ OxGEt/~

é

UCSC CMPE-013/L Summer 2018

Pseudo-randomness Issues

e |t's a cycle!
— Has a maximum period

— If eavesdroppers can watch long enough, they can figure out

where you are in your cycle

e Correlations still appear (usually)
— DieHard battery '” 2 2.

il

ot

s

o
W

Max Lichtenstein UCSC CMPE-013/L Summer 2018

210 Pseudo-randomness

L4appg T T T T T T

1E00Rg | ¥ -
»

12088

Soepe -

[qeRulete] I

40008 [-

ETLLT I SR " " e

a A b I 1 i 1 1 5 s
a8 Zhaan 4Baan &BRag gaaag Laa@Eaa LZaBaa l4aame E L i)

ggan, — From https://www.taygeta.com/rwalks/nodel.htmi 5

ichtenstein UCSC CMPE-013/L Summer 2018

Real* randomness

e Use (nearly) non-deterministic phenomena
— Noise
— Human interaction
— Timer drift

ot

s

o
W

UCSC CMPE-013/L Summer 2018

Randomness from noise

v “'-L sl'i“f\m—’ A r.f L=

8)___ A Dc

Clo-st:i C

et 519¢0§

(34

(e
A

s
iy

o
W

UCSC CMPE-013/L Summer 2018

Randomness from humans

NS
N

take T

-1!'\!“4 i 3

]lc('? J’Af‘: -"C.E}

=
&

UCSC CMPE-013/L Summer 2018

Randomness from clock drift

3 clockd

= non

"F—u'-—..

~ d N

—{—

LR (i dime,)

red |idFHe Fla o

=
&

UCSC CMPE-013/L Summer 2018

Combining randomness

e XORing two random bitstrings
— ALWAYS increases your entropy &—
—

— Can combine many of these

é

UCSC CMPE-013/L Summer 2018

min =
PeARD _2ait)

Srond (SWITCH 57aT fgl,))

BREAK

Max Lichtenstein UCSC CMPE-013/L Summer 2018

Engineering Tips from Max

e Naming is important Tow_lovel _e WA']-/;

— That's why it's hard
—

A

e Functions should do one thing well

V"Lri e C L_([f{,fuﬂ

Messacge fosse ~_
Mae <o miSJLy(f‘f"ruc}.

é

UCSC CMPE-013/L Summer 2018

Engineering Tips from Max

(hj

e Take breaks! [< VI -]

— Stexp - _

— ea+t - Y oaee 4l P

— Sy o

— s 9ty e
e Coding is more about thmkmg{;han typmg
-] MUN
+'7{’ l“.n}

. ‘Eﬁ
Werk T M Eesc CMPE-013/L Summ

er 2018

Engineering Tips from Max

e Work on teams where you’re the best, work on teams
where you’re the worst

e Learn new languages

b
€Y

UCSC CMPE-013/L Summer 2018

Engineering Tips from Max

e Design systems with debugging in mind
VS T

ot

o
W

UCSC CMPE-013/L Summer 2018

Engineering Tips from Max

hviss L romse
e Underpromise and overdeliver |— ‘J']
— Multiply by 10 be S~ f o s
O A wer AR

7~

-W{}r love, not money)

f X

e ——

T ,"Ut.j :ﬁ,*‘ﬂ-f? -:E
x%"

UCSC CMPE-013/L Summer 2018

Engineering Tips from Max

e Help fix the culture

v Sexi b ra vk MAYRE

-

(Lhﬂﬂﬂ’t 79\-11”“ ° 4rn "-”"Jf}'

s ‘I"fof‘l l‘:"\ “LL;"‘F" Vlff;"}

L

E”?fn eery wre foh of tTunseloes

é

UCSC CMPE-013/L Summer 2018

Software Engineering

Design
Build

s
iy

o
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Design process
Initial
Planning
e e -

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Use consistent styling
e Summary:

— Utilize whitespace
— Good variable/function names
— Comments that describe non-obvious code behavior

e "How?" and "why?" are good questions to answer in comments

ot

o
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Modularity is important
e Why?
— Supports code reuse
— Simplifies changes
— Allows for testing
e How?
— Keep functions small
— Minimize side effects
— Information hiding/encapsulation

ot

o
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Information hiding/encapsulation
e Summary:

— Hide unimportant details from the user
— Protects the user from breaking things
— Separates backend from frontend

b
(cp

UCSC CMPE-013/L Summer 2018

Software Engineering

Mantras

e Keep it simple, stupid
— KISS
e Summary:
— Don't solve problems you don't need to
— Don't introduce unnecessary complexity
— Prioritize for readability and modularity
— Don't be clever and/or cute
— Applies to code architecture and specific code constructs

b
(cp

UCSC CMPE-013/L Summer 2018

Software Engineering

Mantras

e Don't repeat yourself
— DRY

e Summary:
— Write code only once
— Simplifies refactoring/incremental development
— Avoids copy/paste errors

ot

o
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Mantras

e You aren't gonna need it
— YAGNI

e Summary:
— Don't introduce features that are unnecessary
— Don't write more code then you have to
— Start small and build from there

ot

o
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Principle of Least Astonishment
e Summary:

— Be consistent with user's expectations
— Build on user's intuition
— Applies to users and developers

¢ 50 both the code and library/program functionality

— Lowers learning curve

b
(cp

UCSC CMPE-013/L Summer 2018

Software Engineering

Principle of Least Astonishment

Functions/variables should have clear names
— That should match their functionality!
— Same for comments

Functions should not do more than you would think

— Minimize side effects

Code should be grouped logically

Functionality should follow precedence if any exists

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Garbage in, garbage out

e Summary:
— "A system's output quality usually cannot be better than the
input quality”
— So bad input results in garbage output
e |nstead of an error condition

— Can propagate through the system
— Can be mitigated by checking the input data

b
(cp

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Fault tolerant design
e Summary:

— Plan for operating failures
¢ Running out of memory

e Data being corrupted
— Provide fallback modes

— Important for complex software where minor errors can be
common

— Part of defensive programming

ot

o
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Error tolerant design

e Summary:
— Plan for user errors
e "Fault tolerant design” applied to the human component
— Primarily invalid user input

— Important for complex software where minor errors can be
common

— Part of defensive programming

b
(cp

UCSC CMPE-013/L Summer 2018

Software Engineering

Writing fault/error tolerant code

e Check return values for errors!

— Many functions have special return values when there are
errors, these should usually be checked

— File accesses
— scanf{()
— malloc()
e Your code should have special error values
— LinkedList library
e Program should also return error if failure
é

%,
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Principles

e Eating your own dogfood

e Summary:
— When engineers use their own creations, they're generally
better

— More likely that bugs are fixed, features are added because
they directly impact the developers

— In use by all of industry
—ldoit

b
(cp

UCSC CMPE-013/L Summer 2018

Software Engineering
Pitfalls

* Premature Optimization
— "root of all evil"

e Summary:
— Optimizing code before performance is a critical factor
— Optimizing reduces readability & modularity
— Optimization not required for a lot of code

* See Amdahl's Law

— See KISS

ot

o
W

UCSC CMPE-013/L Summer 2018

Software Engineering

Teamwork

e Working as a group is the most challenging engineering
practice

e Requires:
— Good communication
e That's it!

b
€Y

UCSC CMPE-013/L Summer 2018

Software Engineering

Teamwork

e Pair programming
e Summary:
— Two developers work side by side: one driving, the other
navigating
— Just like driving:

* Driver writes code

¢ Navigator plans ahead, thinks of edge cases, double-checks driver

— Requires frequent role switching to be effective!

b
(cp

UCSC CMPE-013/L Summer 2018

Software Engineering

Teamwork

e Division of labor
e Summary:

— Divide work into tasks that can be split between team
members

— Requires coordination to not step on each other's toes
— Documentation is very important!

— Can be useful to split testing and development between
different people

b
(cp

UCSC CMPE-013/L Summer 2018

